Review Problems

March 22, 2017

1. (Fall 2006, Exam 3, #1) Which of the following series converge?

(a)
$$S_1 = \sum_{n=1}^{\infty} \frac{n^3 + 9n^2}{300n^4 + 3n}$$

(b) $S_2 = \sum_{n=1}^{\infty} \frac{8n^2 + 7n}{n^4 + 9n^3}$
(c) $S_3 = \sum_{n=1}^{\infty} \frac{8n^6 + 7n}{600n^5 + 200n^3}$

- 2. (Fall 2006, Exam 3, #2) Which of the following is true about the series $\sum_{n=2}^{\infty} \frac{1}{n(\ln n^2)}$?
 - I) It converges by the integral test
 - II) It converges by the comparison test with $\sum_{n=1}^{\infty} \frac{1}{n}$
 - III) It diverges by the comparison test with $\sum_{n=1}^{\infty}$
- 3. (Fall 2006, Exam 3, #3) Let f(x) be a function defined for $x \ge 1$, such that $0 \le f(x) \le 1$ for all $x \ge 1$. What can be said about the convergence of the series

$$S_1 = \sum_{n=1}^{\infty} \frac{f(n)}{n}, S_2 = \sum_{n=1}^{\infty} \frac{f(n)}{n^2}?$$

4. (Fall 2006, Exam 3, #4) Using that $\lim_{x\to 0} \frac{\sin x}{x} = 1$, and the limit comparison theorem, what can be said about the convergence of the series

$$S_1 = \sum_{n=1}^{\infty} \sin\left(\frac{1}{n}\right), S_2 = \sum_{n=1}^{\infty} \sin\left(\frac{1}{n^2}\right)?$$

5. (Fall 2007, Exam 3, #4) Suppose we want to approximate the sum of the series $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^3}$ by the sum of $s_m = \sum_{n=1}^{m} (-1)^n \frac{1}{n^3}$ of the first *m* terms. By the theory of alternating series, the error will be less than 10⁻³ provided m = what?

6. (Fall 2006, Exam 3, #5) Find the smallest number of terms which one needs to add to find the sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^3 n!}$ with an error strictly less than 10^{-3} .